校民革支部主委魏毅在机器学习研究方向取得新进展

发布者:统战部发布时间:2023-04-10浏览次数:400

近年来,为解决机器学习技术面临的泛化性能弱、可解释性差等问题,国际知名学者引入因果思路,从因果角度探讨可能的解决方案。因果关系发现是因果理论的基础,也是提升机器学习泛化性、可解释性的关键一环。随机对照试验法是因果关系发现问题的传统求解法,但在很多情况下,随机对照试验法不仅成本高昂,而且有可能违背伦理原则。另一方面,在大数据时代,数据采集常常是一个被动的观测过程,人们无法对数据本身进行物理干预。因此研究如何从观测性数据中发现变量之间的因果关系是一项重要的工作。

我校民革支部主委、数学与计算机学院副教授魏毅与中国科学院计算技术研究所朱登明副研究员、北京交通大学李清勇教授针对离散两变量之间的因果关系发现问题,基于噪声可加模型,提出了一种用于辨识因变量、果变量的因果不对称性,并以该因果不对称性为出发点,提出了一种新的因果关系发现算法。在该算法中,作者给出了一种估计噪声条件分布与噪声总体分布的非参数统计方法,并提出了一种新颖的加权规范化Wasserstein距离来计算噪声条件分布之间的差异。理论分析和实验结果表明该方法在因果发现的辨识精度上超过现有代表性方法,并且具有计算速度快、在小样本数据集上性能稳定的优点。

该研究成果近日以“Causal Discovery on Discrete Data via Weighted Normalized Wasserstein Distance”为题,在线发表在国际权威学术期刊《IEEE Transactions on Neural Networks and Learning Systems》(中科院1区,影响因子14.255)。该期刊是机器学习、人工神经网络方面的国际顶级期刊。魏毅为论文第一作者。该研究得到了国家自然科学基金、福建省自然科学基金、澳门银银河官方网welcome科技创新发展基金等项目的支持。

 


Baidu
sogou